2024-11-13 00:13:33
图像标注就是给图像打上标签标记,例如矩形框等形式,在以前,需要招聘专门的图像标注师,随着AI的不断发展,这个行业正发生翻天覆地的变化。人工智能利用计算机和机器模仿人类思维来解决问题或制定决策。深度学习是人工智能的子领域,深度学习算法模型由神经网络组成。通过学习样本数据的特征表达以及数据分布来实现能够像人一样具备分析和识别目标的能力。目前,有许多功能性AI工具可以帮助我们进行图像标注,有的是纯手动拉框,有的则可以帮助我们进行自动标注。AI热潮下,越先使用AI图像标注越能获益。成都人工智能AI智能分析软件
无人机作为高空巡逻侦查的辅助平台,凭借其灵活、广阔的视野,能够为治安巡逻提供更多的地面信息,有效弥补视野盲区,实现三位一体防控。例如公安可以通过无人机开展“空中喊话”,将反诈、防溺水、消防安全等知识“空投”给市民,开展“空中喊话”。在高空喊话的同时,无人机还将现场巡检画面实时传回情指中心联合指挥大厅,民警将巡航检查发现的小区消防通道堵塞、居民楼飞线充电等隐患,迅速派发至属地职能单位予以整改。这种模式下,需要无人机搭载吊舱来实现相应功能。成都慧视推出的VIZ-GT07D三轴双光微型吊舱就是一个不错的选择。这款吊舱是一款微型的三轴双光惯性稳定吊舱,集成了640×512高分辨率红外相机、1300万像素的全高清可见光相机和陀螺稳定平台,能够实现夜间和白天24小时的无人机巡逻工作。成都深度学习AI智能算法分析系统人工智能Artificial Intelligence、机器学习Machine Learning和深度学习Deep Learning通常可以互换使用。
YOLO系列算法是目标识别领域很重要的技术之一,因为性能强大、消耗算力较少,一直以来都是实时目标检测领域的主要范式。该框架被***用于各种实际应用,包括自动驾驶、监控和物流等行业的目标识别。自今年2月YOLOv9发布以后,近期,清华又推出了YOLOv10,作为计算机视觉领域的突破性框架,具备实时的端到端目标检测能力,通过提供结合效率和准确性的强大解决方案,延续了YOLO系列的传统。据悉,YOLOv10在各种模型规模上都实现了SOTA性能和效率。例如,YOLOv10-S在COCO上的类似AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOP大幅减少。与YOLOv9-C相比,在性能相同的情况下,YOLOv10-B的延迟减少了46%,参数减少了25%。
AI的出现可以很好地解决这个问题。针对于这样的环境需求,成都慧视推出了基于瑞芯微平台的深度学习算法开发平台SpeedDP,它是一款入门级的AI开发平台,提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能,提供丰富的算法参数设置接口,满足不同用户业务场景的定制化需求。经过前期的需求分析,大量的数据训练,SpeedDP就能够生成适合行业需求的训练模型,通过这个模型,就能不断进行自动化的图像标注。SpeedDP是深度学习领域的产品。
随着AI的快速发展,对应的软硬件也得到了快速的普及,苹果公司已经推出了新一代的具有AI功能的系列产品,Intel也推出了具有AI能力的新一代芯片。无论是无人机用吊舱产品还是边海防用转台产品,如果前端没有具有AI能力的图像处理板卡或智能跟踪设备,没有高性能的AI算法,很难在激烈的竞争中获得优势。特别是针对一些特定场景或特定目标的检测跟踪性能提升,图像算法工程师的压力与日俱增。按照传统的做法,需要经过数据采集、人工标注、模型训练、模型部署、效果评估等流程。人工智能和机器学习技术,还可以帮助提高建筑工地的安全性并降低风险。成都智慧工地AI智能视觉系统
通过海量的数据模型训练,SpeedDP能够更加聪明。成都人工智能AI智能分析软件
而像标注、适配性移植部署等工作会耗费图像算法工程师大量时间和精力。对于时间成本的把控不到位,就变相增加了项目整体成本。基于以上强烈的市场需求,成都慧视光电技术有限公司经过两年的研发改进,推出了SpeedDP深度学习算法开发平台,该平台一经推出就得到了广大图像算法工程师的高度认可,尤其是一些图像标注项目多、任务重的科研院所,更是对SpeedDP高度推崇。SpeedDP作为一款专门针对AI零基础用户的低门槛AI开发平台,能够给用户提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。平台提供丰富的算法参数设置接口,满足不同用户业务场景的定制化需求。此外,慧视光电SpeedDP深度学习算法开发平台支持本地化服务器部署,满足一些客户需要对敏感数据或特定数据进行训练防止数据泄露的要求。成都人工智能AI智能分析软件